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Clipping a Gaussian random field at a level that is position-dependent yields statistically inhomogeneous
morphologies, relevant to many ordered nanostructured materials. The one-point and two-point probability
functions of the morphology are derived, as well as a general relation between the specific surface area and the
gradient of the clipping function. The general results are particularized for the comprehensive analysis of
small-angle x-ray scattering and nitrogen adsorption of SBA-15 ordered mesoporous silica.
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Morphological models are needed for the quantitative
characterization of the microstructure of materials, and for
the understanding of their structure-dependent properties
�1–5�. The main difficulty when developing such models is
to find a balance between conceptual simplicity and realism.
The former is indispensable for the reliable analysis of char-
acterization data with as few parameters as possible. The
latter implies that as many morphological features as pos-
sible be incorporated in the materials description, which of-
ten entails some type of randomness. Stochastic models
based on Gaussian random fields offer a way through these
almost antagonistic requirements �6–10�.

A Gaussian random field �GRF� w�x� is a stochastic func-
tion of space having mean 0 and variance 1, and character-
ized by its correlation function g�r�= �w�r�w�0��. As initially
proposed by Cahn in the context of spinodal decomposition
�6�, the morphology of a material can be modeled by defin-
ing one phase as the locus of all points where a GRF takes
values larger than a clipping constant �. Figures 1�a� and
1�b� show a realization of a GRF having g�r�=1 /cosh�r /��
with �=4 nm, and the clipped morphology with �=0. Mod-
els based on clipped GRFs have proved useful for analyzing
the morphology of a wide variety of amorphous materials,
from polymer blends �11� to foodstuff �12�, among others
�13�. More elaborate models, based on two clipping con-
stants, have been used to characterize microemulsions �8,9�.
Combining two statistically independent GRFs further en-
ables to model filamentary morphologies �14� and notably
gels �15�. Other developments with Gaussian fields concern
notably the three-dimensional �3D� reconstruction of materi-
als from their two-dimensional �2D� imaging �16�, the ad-
vanced estimation of the models parameters �17–19�, as well
as with the generalization of the concept to Poisson fields
�20�.

All the mentioned models and methods are applicable to
disordered morphologies having short-ranged correlation.
Progress in the chemistry of materials, however, led to the
development of hosts of ordered materials, the morphology
of which cannot be analyzed with the existing models. These
materials notably encompass colloidal crystals �21�, as well
as the large family of ordered mesoporous materials synthe-
sized by liquid crystal templating �22�, many of which have
long-ranged correlations. Their thorough characterization re-

quires statistically inhomogeneous morphological models,
which have received remarkably little attention so far �23�.

In the present paper, we propose a family of morphologi-
cal models, obtained by clipping a GRF w�x� at a level ��x�
that is a deterministic function of space. The indicator
function—taking the value 1 in a given phase and 0 in the
other—is formally defined as f�x�=��w�x�−��x��, where �
is the step function. A wide variety of morphologies can be
modeled according to the chosen clipping function ��x�. Fig-
ure 1�c� was obtained with ��x� being a linear function of
one space coordinate, which provides a model of rough in-
terfaces. Other examples of inhomogeneously clipped Gauss-
ian fields are given in Fig. 2. Globular objects with complex
morphologies are modeled with ��x� being a radial function
�Figs. 2�a� and 2�c��. Disordered lamellar structures can be
modeled with ��x� being a periodic function �Fig. 2�b��. As a
last example, a structure reminiscent of an astronomical ob-
ject is modeled in Fig. 2�d� based on an axisymmetric clip-
ping function.

Many measurable properties of materials can be ex-
pressed through their n-point probability functions �1,2�. Vol-
umes are related to the one-point probability function S1�x�,
defined as the probability that point x belongs to the phase.
In the context of a clipped GRF model, S1 is equal to the
probability that w�x� takes locally a value larger than ��x�,
namely,

FIG. 1. Realization of a Gaussian random field with �=4 nm
�a�, and the morphologies obtained by clipping the realization with
�=0 �b�, and �= �25−x� /5�c�.

PHYSICAL REVIEW E 80, 061401 �2009�

1539-3755/2009/80�6�/061401�5� ©2009 The American Physical Society061401-1

http://dx.doi.org/10.1103/PhysRevE.80.061401


S1�x� =
1

2
−

1

2
erf���x�

�2
	 , �1�

which results from w�x� being Gaussian distributed; erf is the
error function. Contrary to statistically homogeneous mod-
els, S1 is here position-dependent; the average volume of a
phase, e.g., of the objects in Fig. 2, is the integral of S1�x�
over space.

Specific surface areas and small-angle scattering patterns
depend on the two-point probability function S�x1 ,x2� of the
material. The latter is the probability that points x1 and x2
both belong to a given phase. This is estimated as the prob-
ability that w�x1� and w�x2� be both larger than ��x1� and
��x2�, namely,

S2�x1,x2� = S1�x1�S1�x2� +
1

2�



0

g�r� dt
�1 − t2

�exp�−
��x1�2 − 2��x1���x2�t + ��x2�2

2�1 − t2� 	dt

�2�

with r= �x1−x2�. Equation �2� was obtained from Eq. �A6� of
Ref. �24�. Note that when ��x� is not a constant, the depen-
dency of S2 is explicitly on x1 and x2 and not only on their
difference, as would be the case for statistically homoge-
neous morphologies.

The relation between the two-point function and the spe-
cific surface area was first derived by Debye in the case of a
statistically homogeneous and isotropic morphology �25�,
and later generalized by Berryman to anisotropic yet statis-
tically homogeneous morphologies �26�. The result of Berry-
man is further generalized to inhomogeneous morphologies
in Ref. �40�: the average local surface area per unit volume
s�x� is

−
s�x�

4
=

1

4�

 d�̂ lim

r→0

�S2�x,x + r�̂�
�r

, �3�

where �̂ is a unit vector and the integral is over all directions
of space. In the case of nonhomogeneously clipped GRF

with two-point function given by Eq. �2�, this result becomes

s�x� =
4

lC

1

��2
exp�−

��x�2

2

F� lC����x��

2
	 , �4�

where lC is the correlation length of the GRF, derived from
the short-distance expansion of the field correlation function
g�r��1− �r / lC�2. The function F in Eq. �4� is

F�x� =
1

2
exp�− x2� + �x +

1

2x
	��

2
erf�x� . �5�

Calculations leading from Eqs. �2� and �3� to Eqs. �4� and �5�
are straightforward yet lengthy; the details can be found in
Ref. �40�.

The total surface area of objects like those in Fig. 2 is
obtained by integrating s�x� over space. If lC����x���1, Eq.
�5� is approximated by F�1 and Eq. �4� reduces to the spe-
cific surface area of homogeneously clipped GRF �e.g.,
�24��. The other limit is lC����x��	1, i.e., when ��x� can be
considered discontinuous over length scales comparable with
lC. In that case, Eq. �5� is approximated by F�x�� /2, which
leads to s�x�= ��S1�x��. The extra surface area resulting from
the variation of � is the area of the surface of discontinuity
multiplied by the jump in density across that surface. When
neither approximation applies, the total surface area is ob-
tained by integrating Eq. �4� over the entire volume of the
material. For the rough interface in Figs. 1�c�, with ����
equal to a constant, the integral can be calculated analyti-
cally. The roughness factor fr defined as the ratio of total
surface area to the geometric interface area �27�, is found to
be

fr =
4

��lC����
F� lC����

2
	 . �6�

In the particular case of Fig. 1�c�, obtained with lC����x��
=1 /2, Eq. �6� predicts fr=4.6.

The general results are now particularized to analyze the
morphology of SBA-15 ordered mesoporous silica synthe-
sized by liquid crystal templating �28�. SBA-15 has numer-
ous applications, notably in catalysis �29�, for the synthesis
of nanoparticles �30�, as well as for the study of confinement
effects on physicochemical phenomena �31,32�. Figure 3�a�

FIG. 2. Example of morphologies that can be obtained by clip-
ping a Gaussian field with a monotonous radial function �a�, with a
periodic function �b�, with a nonmonotonous radial function �c�,
and with a function having axial symmetry �d�.

FIG. 3. Electron tomogram of SBA-15 mesoporous silica �a�,
and 2D slices of the reconstruction taken parallel �b� and orthogonal
�c� to direction of the main channels.
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is an electron tomography reconstruction of SBA-15 �33,34�,
which provides a 3D map of the material with a nanometer
resolution. The morphology of SBA-15 is approximated by a
2D hexagonal array of uniformly sized cylindrical pores
�Figs. 3�b� and 3�c�� with diameter about 6 nm. The hexago-
nal symmetry is also detected in small-angle x-ray scattering
�SAXS� measured on the same sample, which exhibits a se-
ries of diffraction peaks at characteristic angular positions
�Fig. 4�a��, with a lattice parameter a=10.8 nm.

Nitrogen adsorption measurements done on the same
sample yield a pore volume of 0.66 cm3 /g—of which
0.09 cm3 /g are due to molecular-sized micropores in the
silica—and a surface area of 419 m2 /gm �33�. Using 

=2.2 g / . cm3 as the density of nonporous silica, the mi-
cropore volume leads to an effective density of 1.84 g /cm3.
Using the latter value, and estimating the area of a hexagonal
unit cell as �3a2 /2 with a=10.8 nm, the specific mesopore
volume and area are converted to a pore volume VL and pore
surface area SL per unit length of the main channels. The
values are VL=51.5 nm2 and SL=38.0 nm. These two val-
ues would correspond to cylindrical pores with diameter d
=8 nm and d=12 nm, respectively. The difference between
the two estimates points to a surface-to-volume ratio incom-
patible with simple cylindrical pores.

In addition to the irregular shape of the mesopores that is
clear from electron tomography �Fig. 3�b��, there is also a
so-called complementary porosity that connects laterally the
main pores �35�. The latter porosity is a key determinant of
the activity of heterogeneous catalysts supported on SBA-15
�29�: it increases the accessibility of the active sites to reac-
tant molecules, and it is also expected to play a major role
during the impregnation of SBA-15. The complementary po-
rosity is also a key for understanding the nanomechanical
properties of the material �32�. Although the existence of a
complementary porosity has been repeatedly evidenced
through indirect methods �35,36� it is largely beyond the
resolution limit of electron tomography �33�, and its charac-
terization remains a challenge.

A complete morphological model of SBA-15, comprising
both the main channels and the complementary porosity, is
obtained by clipping a GRF with a function ��x� that is
maximum in the center of the pores, and minimum in the

region of the wall. This is illustrated in Fig. 5�a�, with a
clipping function given by

��x,y,z� = �0 + ��1 − �0��
i

��r = di�x,y�� , �7�

where the sum covers all nodes of a hexagonal lattice;
di�x ,y� is the distance to the ith node, and ��r�
= �1−r /R���R−r� with R a constant. The clipping function
��x� has a constant gradient ��1−�0� /R close to the nodes,
which accounts for an interface with tunable roughness ac-
cording to Eq. �6�. For r�R the clipping level is �0, which
accounts for the complementary porosity, the latter being non
existent in the limit �0→−
.

The total pore volume VL per unit pore length is obtained
by integrating �1−S1�x�� over a unit hexagonal cell. From
Eq. �1� with ��x� given by Eq. �7�, one finds

VL = �1 + erf� �0

�2
	
�3a2

4

+
R2��

��1 − �0�2��1 + �1
2�

��

2 �erf� �1

�2
	 − erf� �0

�2
	


+ � �1

�2
�exp�−

�1
2

2
	 − exp�−

�0
2

2
	


+
�0 − �1

�2
exp�−

�0
2

2
	�� , �8�

where �3a2 /2 is the total area of the unit cell. Knowing a
=10.8 nm from the angular position of the SAXS peaks
�Fig. 4�, Eq. �8� relates VL to parameters �0, �1, and R of the
model. In the following, Eq. �8� is used to impose the experi-
mental value VL=51.5 nm2 obtained from nitrogen adsorp-
tion, while fitting the intensities of the SAXS peaks in Fig. 4.

The SAXS intensity of a biphasic structure is proportional
to the Fourier transform of the so-called stick probability
function P�r� �37,38�, defined as the probability that a stick
with length r tossed randomly in the material has both ends
within a given phase. For statistically homogeneous materi-

FIG. 4. SAXS pattern of SBA-15 in with vertical lines corre-
sponding to a hexagonal lattice with spacing 10.8 nm. The intensity
of the peaks is fitted in the inset with a cylindrical form factor
�dashed line� and with the nonhomogeneously clipped GRF �solid
line�.

FIG. 5. Modeling of SBA-15 with ��x� being a 2D periodic
function with hexagonal symmetry �a�, and realization of the 3D
model �b� with parameters derived from SAXS and nitrogen
adsorption.

MORPHOLOGICAL MODELS OF COMPLEX ORDERED … PHYSICAL REVIEW E 80, 061401 �2009�

061401-3



als, P�r� coincides with the two-point probability function
S2�r=x1-x2�. In general, however, P�r� is obtained through a
spatial averaging as

P�r� =
1

Vx



Vx

S2�x,x + r�dVx, �9�

where Vx is the volume of the material. The analysis of the
background scattering in Fig. 4 would require combining Eq.
�2� with Eq. �9�, and evaluating a Fourier transform. The
analysis of the peak intensities is much simpler because it
only depends on long-ranged correlations. Over long dis-
tances, Eq. �2� reduces to S�x1 ,x2��S1�x1�S1�x2� because
g�r��0, from which P�r� is proportional to the self-
convolution of S1�x� with itself. Therefore, the intensity of
the SAXS peaks can be analyzed in the usual way using
�A�q��2 as a form factor �39�, with A�q� being the Fourier
transform of S1�x� within a single hexagonal cell. The shape
of A�q� is not modified if a constant is subtracted from S1�x�;
subtracting �1−erf��0 /�2�� /2 from Eq. �1� leads to

A�q� = 

0

R

J0�qr�
1

2�erf���r�
�2

	 − erf� �0

�2
	�rdr , �10�

where ��r�=�0+ ��1−�0���r�. The solid line in the inset of
Fig. 4 is the least-square fit of the peak intensities with Eq.
�10�, with only �0 and �1 as adjustable parameters. The
value of parameter R is obtained through Eq. �8� with VL
=51.5 nm2, for any value of �0 and �1. The fitted values are
�0=−1.08, �1=5.27, and R=4.65 nm. It should be noted
that R is smaller than half the hexagonal lattice size, so there
is indeed a region with constant ��x�=�0 between neighbor-
ing pores. The hexagonal symmetry of the clipping function
has therefore no effect of the shape of the pore sections
which are found to be statistically isotropic.

The correlation length of the GRF cannot be identified
from the peak intensities because lC does not appear in Eqs.

�8� and �10�. The characteristic length can be obtained from
the experimental specific surface area per unit length of the
channels, SL=38.0 nm. In the context of our model, SL is
obtained by integrating Eq. �4� over a unit hexagonal cell.
Noting that the gradient of ��x� is a constant for distances to
the center shorter than R and that it vanishes elsewhere, the
following analytical result is obtained

SL =
4

lC��2
���3a2

2
− �R2	exp�−

�0
2

2
	

+
2�R2

��0 − �1�2F� lC��1 − �0�
2R


��1��

2
�erf� �1

�2
	

− erf� �0

�2
	
 − �exp�−

�0
2

2
	 − exp�−

�1
2

2
	
�� �11�

in which all parameters are known but lC. Equating SL to 38
nm and solving Eq. �11� numerically leads to lC=1.6 nm.

Figure 5�b� was obtained with a GRF having g�r�
=1 /cosh�r /�� with �=1.14 nm, corresponding to lC
=1.6 nm, and other parameters derived previously from
SAXS and nitrogen adsorption. With simple morphological
models, it is mostly through incoherencies between SAXS
and adsorption analyses that the existence of the complemen-
tary porosity is acknowledged �e.g., �33��. The use of a non-
homogeneously clipped GRF enables us to analyze coher-
ently SAXS and adsorption within a single morphological
model. This leads to a description of the complementary po-
rosity which is crucial for applications of SBA-15, notably in
catalysis.

C.J.G. acknowledges support from the National Funds for
Scientific Research �F.R.S.-FNRS, Belgium�. The authors are
obliged to M. Wolters for synthesizing the SBA-15 sample,
to H. Friedrich for the electron tomography, and to P. E. de
Jongh and K. P. de Jong for helpful suggestions.

�1� G. Matheron, Elements Pour Une Théorie des Milieux Poreux
�Masson, Paris, 1967�.

�2� S. Torquato, Random Heterogeneous Materials: Microstruc-
ture and Macroscopic Properties �Springer, New York, 2001�.

�3� A. P. Roberts and E. J. Garboczi, Proc. R. Soc. London, Ser. A
458, 1033 �2002�.

�4� C. H. Arns, M. A. Knackstedt, and K. R. Mecke, Phys. Rev.
Lett. 91, 215506 �2003�.

�5� E. Roduner, Chem. Soc. Rev. 35, 583 �2006�.
�6� J. W. Cahn, J. Chem. Phys. 42, 93 �1965�.
�7� J. A. Quiblier, J. Colloid Interface Sci. 98, 84 �1984�.
�8� N. F. Berk, Phys. Rev. Lett. 58, 2718 �1987�.
�9� M. Teubner and R. Strey, J. Chem. Phys. 87, 3195 �1987�.

�10� N. F. Berk, Phys. Rev. A 44, 5069 �1991�.
�11� S. H. Chen, D. D. Lee, K. Kimishima, H. Jinnai, and T. Hash-

imoto, Phys. Rev. E 54, 6526 �1996�.
�12� F. Bron and D. Jeulin, Image Anal. Stereol. 23, 33 �2004�.
�13� P. Levitz, Adv. Colloid Interface Sci. 76-77, 71 �1998�.

�14� A. P. Roberts, Phys. Rev. E 55, R1286 �1997�.
�15� C. J. Gommes and A. P. Roberts, Phys. Rev. E 77, 041409

�2008�.
�16� A. P. Roberts, Phys. Rev. E 56, 3203 �1997�.
�17� D. J. Nott and R. J. Wilson, Signal Process. 80, 125 �2000�.
�18� V. De Oliveira, Comput. Stat. Data Anal. 34, 299 �2000�.
�19� J. A. Quintanilla and W. M. Jones, Phys. Rev. E 75, 046709

�2007�.
�20� M. Grigoriu, J. Appl. Phys. 94, 3762 �2003�.
�21� Y. Yin and A. P. Alivisatos, Nature �London� 437, 664 �2005�.
�22� I. W. Hamley, Angew. Chem., Int. Ed. 42, 1692 �2003�.
�23� J. Quintanilla and S. Torquato, Phys. Rev. E 55, 1558 �1997�.
�24� A. P. Roberts and M. A. Knackstedt, Phys. Rev. E 54, 2313

�1996�.
�25� P. Debye, H. R. Anderson, and H. Brumberger, J. Appl. Phys.

28, 679 �1957�.
�26� J. G. Berryman, J. Math. Phys. 28, 244 �1987�.
�27� A. D. McNaught, and A. Wilkinson, Compendium of Chemical

CEDRIC J. GOMMES AND JEAN-PAUL PIRARD PHYSICAL REVIEW E 80, 061401 �2009�

061401-4



Terminology �Blackwell Scientific, Oxford, 1997�.
�28� D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F.

Chmelka, and G. D. Stucky, Science 279, 548 �1998�.
�29� J. R. A. Sietsma, J. D. Meeldijk, J. P. den Breejen, M.

Versluijs-Helder, A. J van Dillen, P. E. de Jongh, and K. P. de
Jong, Angew. Chem., Int. Ed. 46, 4547 �2007�.

�30� F. Gao, Q. Lu, X. Liu, Y. Yan, and D. Zhao, Nano Lett. 1, 743
�2001�.

�31� G. Dosseh, X. Yongde, and C. Alba-Simionesco, J. Phys.
Chem. B 107, 6445 �2003�.

�32� J. Prass, D. Müter, P. Fratzl, and O. Paris, Appl. Phys. Lett. 95,
083121 �2009�.

�33� C. J. Gommes, H. Friedrich, M. Wolters, P. E. de Jongh, and K.
P. de Jong, Chem. Mater. 21, 1311 �2009�.

�34� H. Friedrich, P. E. de Jongh, A. J. Verkleij, and K. P. de Jong,
Chem. Rev. �Washington, D.C.� 109, 1613 �2009�.

�35� M. Kruk, M. Jaroniec, C. H. Ko, and R. Ryoo, Chem. Mater.

12, 1961 �2000�.
�36� Z. Liu, O. Terasaki, T. Ohsuna, K. Hiraga, H. J. Shin, and R.

Ryoo, ChemPhysChem 2, 229 �2001�.
�37� S. Ciccariello, G. Cocco, A. Benedetti, and S. Enzo, Phys. Rev.

B 23, 6474 �1981�.
�38� O. Glatter and K. Kratky, Small-Angle X-ray Scattering �Aca-

demic, London, 1982�.
�39� S. Förster, A. Timmann, M. Konrad, C. Schellbach, A. Meyer,

S. S. Funari, P. Mulvaney, and R. Knott, J. Phys. Chem. B
109, 1347 �2005�.

�40� See EPAPS Document No. E-PLEEE8-80-014912for the deri-
vation of the relation between 2–point function and specific
surface area for inhomogeneous morphologies, as well as for
the details of calculations leading to Eq. �4�. For more infor-
mation on EPAPS, see http://www.aip.org/pubservs/
epaps.html.

MORPHOLOGICAL MODELS OF COMPLEX ORDERED … PHYSICAL REVIEW E 80, 061401 �2009�

061401-5


